Abstract

It is commonly observed in the food industry, battery production, automotive paint shop, and semiconductor manufacturing that an intermediate product’s residence time in the buffer within a production line is controlled by a time window to guarantee product quality. There is typically a minimum time limit reflected by a part’s travel time or process requirement. Meanwhile, these intermediate parts are prevented from staying in the buffer for too long by an upper time limit, exceeding which a part will be scrapped or need additional treatment. To increase production throughput and reduce scrap, one needs to control machines’ working mode according to real-time system information in the stochastic production environment, which is a difficult problem to solve, due to the system’s complexity. In this article, we propose a novel decomposition-based control approach by decomposing a production system into small-scale subsystems based on domain knowledge and their structural relationship. An iterative aggregation procedure is then used to generate a production control policy with convergence guarantee. Numerical studies suggest that the decomposition-based control approach outperforms general-purpose reinforcement learning method by delivering significant system performance improvement and substantial reduction on computation overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.