Abstract

We report measurements of coherence times of an rf SQUID qubit using pulsed microwaves and rapid flux pulses. The modified rf SQUID, described by an double-well potential, has independent, in situ, controls for the tilt and barrier height of the potential. The decay of coherent oscillations is dominated by the lifetime of the excited state and low frequency flux noise and is consistent with independent measurement of these quantities obtained by microwave spectroscopy, resonant tunneling between fluxoid wells and decay of the excited state. The oscillation’s waveform is compared to analytical results obtained for finite decay rates and detuning and averaged over low frequency flux noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.