Abstract

This paper investigates the placement of data and parity on redundant disk arrays. Declustered organizations have been traditionally used to achieve fast reconstruction of a failed disk's contents. In previous work, Holland and Gibson identified six desirable properties for ideal layouts; however, no declustered layout satisfying all properties has been published in the literature. We present a complete, constructive characterization of the collection of ideal declustered layouts possessing all six properties. Given that ideal layouts exist only for a limited set of configurations, we also present two novel layout families. P RIME and R ELPR can tolerate multiple failures in a wide variety of configurations with slight deviations from the ideal. Our simulation studies show that the new layouts provide excellent parallel access performance and reduced incremental loads during degraded operation, when compared with previously published layouts. For large accesses and under high loads, response times for the new layouts are typically smaller than those of previously published declustered layouts by a factor of 2.5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.