Abstract

Boreal forests are critical to the global carbon (C) cycle. Despite recent advances in our understanding of boreal C budgets, C dynamics during compositional transition to late-succession forests remain unclear. Using a carefully replicated 203-year chronosequence, we examined long-term patterns of forest C stocks and net ecosystem productivity (NEP) following stand-replacing fire in the boreal forest of central Canada. We measured all C pools, including understorey vegetation, belowground biomass, and soil C, which are often missing from C budgets. We found a slight decrease in total ecosystem C stocks during early stand initiation, between 1 and 8 years after fire, at -0.90 Mg C ha -1 y -1 .A s stands regenerated, live vegetation biomass increased rapidly, with total ecosystem C stocks reaching a maximum of 287.72 Mg C ha -1 92 years after fire. Total ecosystem C mass then decreased in the 140- and 203year-old stands, losing between -0.50 and -0.74 Mg Ch a -1 y -1 , contrasting with views that old-growth forests continue to maintain a positive C balance. The C decline corresponded with canopy transition from dominance of Populus tremuloides, Pinus banksiana ,a nd Picea mariana in the 92-year-old stands to Betula papyrifera, Picea glauca ,a ndAbies balsamea in the 203-yearold stands. Results from this study highlight the role of succession in long-term forest C dynamics and its importance when modeling terrestrial C flux.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.