Abstract
The valence orbitals of Group V metal monoxides exhibit atomic-like properties which mimic that of coinage metal element atoms. The electronic structures of MO-1/0 (M = V, Nb, and Ta) have been determined by negative ion photoelectron velocity map imaging. Electron affinities and vibrational frequencies for the ground state and excited states of MO (M = V, Nb, and Ta) molecules have been identified as well as photoelectron angular distributions. On the basis of the equivalent-electron principle, MO- (M = V, Nb, and Ta) molecules bear valence electron configurations similar to those of coinage metal elemental atoms, despite having more complicated electronic states for molecules, and concomitant mimicry of magnetic superatom. Generally, other than low-spin states of coinage metal atoms, Group V metal monoxides demonstrate a high-spin state except for TaO, possessing the potential applications to inexpensive superatoms in industrial catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.