Abstract

Iodination of tyrosine was recently discovered as a useful method for generating radical peptides via photodissociation of carbon-iodine bonds by an ultraviolet photon in the gas phase. The subsequent fragmentation behavior of the resulting odd-electron peptides is largely controlled by the radical. Although previous experiments have focused on mono-iodination of tyrosine, peptides and proteins can also be multiply iodinated. Tyrosine and, to a lesser extent, histidine can both be iodinated or doubly iodinated. The behavior of doubly iodinated residues is explored under conditions where the sites of iodination are carefully controlled. It is found that radical peptides generated by the loss of a single iodine from doubly iodinated tyrosine behave effectively identically to singly iodinated peptides. This suggests that the remaining iodine does not interfere with radical directed dissociation pathways. In contrast, the concerted loss of two iodines from doubly iodinated peptides yields substantially different results that suggest that radical recombination can occur. However, sequential activation can be used to generate multiple usable radicals in different steps of an MS(n) experiment. Furthermore, it is demonstrated that in actual peptides, the rate of iodination for tyrosine versus mono-iodotyrosine cannot be predicted easily a priori. In other words, previous assumptions that mono-iodination of tyrosine is the rate-limiting step to the formation of doubly iodinated tyrosine are incorrect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.