Abstract

We revisit the problem of deciding by means of a finite automaton whether a string is uniquely decodable from its bigram counts. An efficient algorithm for constructing a polynomial-size Nondeterministic Finite Automaton (NFA) that decides unique decodability is given. This NFA may be simulated efficiently in time and space. Conversely, we show that the minimum deterministic finite automaton for deciding unique decodability has exponentially many states in alphabet size, and compute the correct order of magnitude of the exponent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.