Abstract

The paper [J. Balogh, B. Bollobas, D. Weinreich, J. Combin. Theory Ser. B, 95 (2005), pp. 29--48] identifies a jump in the speed of hereditary graph properties to the Bell number $B_n$ and provides a partial characterization of the family of minimal classes whose speed is at least $B_n$. In the present paper, we give a complete characterization of this family. Since this family is infinite, the decidability of the problem of determining if the speed of a hereditary property is above or below the Bell number is questionable. We answer this question positively by showing that there exists an algorithm which, given a finite set $\mathcal{F}$ of graphs, decides whether the speed of the class of graphs containing no induced subgraphs from the set $\mathcal{F}$ is above or below the Bell number. For properties defined by infinitely many minimal forbidden induced subgraphs, the speed is known to be above the Bell number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.