Abstract

We present a new decision procedure for finite-precision bitvector arithmetic with arbitrary bit-vector operations. Our procedure alternates between generating under- and over-approximations of the original bit-vector formula. An under-approximation is obtained by a translation to propositional logic in which some bit-vector variables are encoded with fewer Boolean variables than their width. If the under-approximation is unsatisfiable, we use the unsatisfiable core to derive an over-approximation based on the subset of predicates that participated in the proof of unsatisfiability. If this over-approximation is satisfiable, the satisfying assignment guides the refinement of the previous under-approximation by increasing, for some bit-vector variables, the number of Boolean variables that encode them. We present experimental results that suggest that this abstraction-based approach can be considerably more efficient than directly invoking the SAT solver on the original formula as well as other competing decision procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.