Abstract

Resource allocation (RA) has a significant impact on vehicular network performance. With high mobility, RA is more challenging, as the number of vehicles in close proximity changes dynamically in the nonstationary environment. In this article, we propose a multiagent double deep Q-networks scheme to stabilize the system and maximize the sum-capacity of the vehicle-to-infrastructure (V2I) links, while satisfying the reliability and delay constraints for vehicle-to-vehicle (V2V) links. To avoid interference caused by unstable V2V links, a transmission mode selection is considered in the scheme design. In addition, we introduce a binarized weight algorithm to accelerate the deep neural network learning process and, therefore, improve the computational complexity of our scheme. Through extensive simulations and complexity analysis, we demonstrate that the proposed scheme yields excellent performance in terms of the sum-rate and probability rate of V2I and V2V communication modes. We also compare the proposed scheme with binarized weights with other algorithms in terms of accuracy evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.