Abstract

A decentralized control scheme based on backstepping design is proposed in this paper for the grid converters of a multi-terminal dc power integration system. With the proposed method, dc bus voltage can be accurately maintained together by several converters through appropriately adjusting their transmitted power according to the power sharing ratio. The system structure is presented and its dynamic model is formulated. The decentralized control laws of the grid converters are developed step by step by designing appropriate Lyapunov functions. The dc bus voltage control and the power sharing performance of the proposed control method are evaluated both under the system normal condition and converter fault condition. Finally, the effectiveness of the proposed scheme is validated through the real-time simulations on NI-PXI platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.