Abstract

A general method for estimating the approximation numbers of composition operators on the Hardy space H 2, using finite-dimensional model subspaces, is studied and applied in the case when the symbol of the operator maps the unit disc to a domain whose boundary meets the unit circle at just one point. The exact rate of decay of the approximation numbers is identified when this map is sufficiently smooth at the point of tangency; it follows that a composition operator with any prescribed slow decay of its approximation numbers can be explicitly constructed. Similarly, an asymptotic expression for the approximation numbers is found when the mapping has a sharp cusp at the distinguished boundary point. Precise asymptotic estimates in the intermediate cases, including that of maps with a corner at the distinguished boundary point, are also established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.