Abstract

To investigate the effect of decarbromodiphenyl ether (BDE-209) exposure on the migration ability of triple-negative breast cancer (TNBC) cells and to explore the underlying mechanism. Human TNBC MDA-MB-231 cells were divided into blank control group and BDE-209 exposure groups (treated with 0.02, 0.20, 2.00, 20.00 and 200.00 ng/mL BDE-209 in high glucose DMEM). Extracellular vehicles (EVs) secreted by MDA-MB-231 cells were isolated by differential ultracentrifugation. Transmission electron microscopy (SEM), nanoparticle tracking analysis (NTA) and Western blotting were performed to characterize the EVs. The effect of the EVs induced by BDE-209 exposure (EVs-BDE-209) on the migration and invasion of MDA-MB-231 cells was detected by wound-healing assay and Transwell test. qRT-PCR was used to measure the miR-221 level in EVs-BDE-209. The expression of MMP9 in MDA-MB-231 cells was determined by Western blotting. Compared with the blank control, BDE-209 exposure increased the tumor cell-derived EVs in dose-dependent manner. The MDA-MB-231 cells co-cultured with EVs released by 200.00 ng/mL BDE-209 exposure showed an 86% increase in cell migration rate, a 1.32-fold higher number of membrane-penetrating cells, a 2.71-fold higher expression level of miR-221, and a 1.62-fold higher expression level of MMP9 compared with the blank control group (all P<0.05). While transfection with anti-miR-221 antibody to decrease miR-221 level in EVs significantly reversed the increased invasion ability of the MDA-MB-231 cells treated with EVs-BDE-209. BDE-209 exposure may promote metastasis potential of MDA-MB-231 cells via EVs-BDE-209 transmitted miR-221.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.