Abstract
This paper presents the results of a series of tests conducted on reinforced concrete (RC) beams strengthened in flexure with near surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) strips. As the main focus of the research is on debonding failure mechanisms, the only test variable investigated was the embedment length of the NSM strip and the NSM strip was extensively strain-gauged to monitor its bond behavior. Load-deflection curves, failure modes, strain distributions in the CFRP strip, and local bond stresses at the CFRP–epoxy interface from the tests are all examined in detail and compared with the predictions of a simple analytical model where appropriate. Of the four embedment lengths investigated, all but the shortest one led to a notable increase in the load-carrying capacity and, to a lesser extent, in the postcracking stiffness of the beam. Debonding was found to be the primary failure mode in all cases except for the beam with the longest embedment length. Also reported in this paper are results from preliminary bond tests used to characterize the local bond-slip behavior of the NSM system. Apart from gaining a better understanding of debonding failures in RC beams with NSM FRP strips, the test results reported in the paper should be useful for future verification of numerical and analytical models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.