Abstract

We present two new dead pixel correction algorithms for dual-band infrared imagery. Specifically, we address the problem of repairing unresponsive elements in the sensor array using signal processing techniques to overcome deficiencies in image quality that are present following the nonuniformity correction process. Traditionally, dead pixel correction has been performed almost exclusively using variations of the nearest neighbor technique, where the value of the dead pixel is estimated based on pixel values associated with the neighboring image structure. Our approach differs from existing techniques, for the first time we estimate the values of dead pixels using information from both thermal bands collaboratively. The proposed dual-band statistical lookup (DSL) and dual-band inpainting (DIP) algorithms use intensity and local gradient information to estimate the values of dead pixels based on the values of unaffected pixels in the supplementary infrared band. The DSL algorithm is a regression technique that uses the image intensities from the reference band to estimate the dead pixel values in the band undergoing correction. The DIP algorithm is an energy minimization technique that uses the local image gradient from the reference band and the boundary values from the affected band to estimate the dead pixel values. We evaluate the effectiveness of the proposed algorithms with 50 dual-band videos. Simulation results indicate that the proposed techniques achieve perceptually and quantitatively superior results compared to existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.