Abstract
The incorporation of carbon dioxide or argon stabilizes the structure of the microporous silica polymorph silicalite well beyond the stability range of tetrahedrally coordinated SiO(2) and, in fact, beyond even the metastability range of low-pressure silica polymorphs such as quartz and cristobalite at room temperature. The bulk modulus of silicalite strongly increases as a result of the incorporation of CO(2) or Ar and is equivalent to that of quartz. The insertion of these species deactivates the normal compression and pressure-induced amorphization mechanisms in this material, impeding the softening of low-energy vibrations, amorphization, and the eventual increase in silicon coordination up to at least 25 GPa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.