Abstract
SummaryDDX41 is a tumor suppressor frequently mutated in human myeloid neoplasms, but whether it affects hematopoiesis is unknown. Using a knockout mouse, we demonstrate that DDX41 is required for mouse hematopoietic stem and progenitor cell (HSPC) survival and differentiation, particularly of myeloid lineage cells. Transplantation of Ddx41 knockout fetal liver and adult bone marrow (BM) cells was unable to rescue mice from lethal irradiation, and knockout stem cells were also defective in colony formation assays. RNA-seq analysis of Lin−/cKit+/Sca1+Ddx41 knockout cells from fetal liver demonstrated that the expression of many genes associated with hematopoietic differentiation were altered. Furthermore, differential splicing of genes involved in key biological processes was observed. Our data reveal a critical role for DDX41 in HSPC differentiation and myeloid progenitor development, likely through regulating gene expression programs and splicing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.