Abstract
This research introduces a robust control design for multibody robot systems, incorporating sliding mode control (SMC) for robustness against uncertainties and disturbances. SMC achieves this through directing system states toward a predefined sliding surface for finite-time stability. However, the challenge arises in selecting controller parameters, specifically the switching gain, as it depends on the upper bounds of perturbations, including nonlinearities, uncertainties, and disturbances, impacting the system. Consequently, gain selection becomes challenging when system dynamics are unknown. To address this issue, an extended state observer (ESO) is integrated with SMC, resulting in SMCESO, which treats system dynamics and disturbances as perturbations and estimates them to compensate for their effects on the system response, ensuring robust performance. To further enhance system performance, deep deterministic policy gradient (DDPG) is employed to fine-tune SMCESO, utilizing both actual and estimated states as input states for the DDPG agent and reward selection. This training process enhances both tracking and estimation performance. Furthermore, the proposed method is compared with the optimal-PID, SMC, and H∞ in the presence of external disturbances and parameter variation. MATLAB/Simulink simulations confirm that overall, the SMCESO provides robust performance, especially with parameter variations, where other controllers struggle to converge the tracking error to zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.