Abstract

Simple SummaryTo ensure the maintenance of genetic stability prior to cell division a cell’s complement of chromosomes must be duplicated. This requires not only the replication of the chromosomal DNA but also the re-establishment the chromatin environment following duplication. To ensure the equal segregation of the genetic material to progeny cells, the duplicated chromatid pairs must remain physically coupled until cell division. The regulation of chromosome duplication is under the overall control of the cyclin-dependent kinases (CDK). In addition to maintaining global control of chromosome duplication, CDK directs the activation of a second kinase, the Dbf4-dependent kinase (DDK), which functions locally to facilitate the activation DNA replication and to coordinate this with the re-establishment of chromatin and the physical coupling of the chromatids following duplication. In this review, we discuss this ‘outsourcing’ by CDK to DDK of the activities that must be coordinated to ensure chromosome maintenance during cell division.The maintenance of genomic stability during the mitotic cell-cycle not only demands that the DNA is duplicated and repaired with high fidelity, but that following DNA replication the chromatin composition is perpetuated and that the duplicated chromatids remain tethered until their anaphase segregation. The coordination of these processes during S phase is achieved by both cyclin-dependent kinase, CDK, and Dbf4-dependent kinase, DDK. CDK orchestrates the activation of DDK at the G1-to-S transition, acting as the ‘global’ regulator of S phase and cell-cycle progression, whilst ‘local’ control of the initiation of DNA replication and repair and their coordination with the re-formation of local chromatin environments and the establishment of chromatid cohesion are delegated to DDK. Here, we discuss the regulation and the multiple roles of DDK in ensuring chromosome maintenance. Regulation of replication initiation by DDK has long been known to involve phosphorylation of MCM2-7 subunits, but more recent results have indicated that Treslin:MTBP might also be important substrates. Molecular mechanisms by which DDK regulates replisome stability and replicated chromatid cohesion are less well understood, though important new insights have been reported recently. We discuss how the ‘outsourcing’ of activities required for chromosome maintenance to DDK allows CDK to maintain outright control of S phase progression and the cell-cycle phase transitions whilst permitting ongoing chromatin replication and cohesion establishment to be completed and achieved faithfully.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.