Abstract

Learning vector representations (i.e., embeddings) of nodes for graph-structured information network has attracted vast interest from both industry and academia. Most real-world networks exhibit a complex and heterogeneous format, enclosing high-order relationships and rich semantic information among nodes. However, existing heterogeneous network embedding (HNE) frameworks are commonly designed in a centralized fashion, i.e., all the data storage and learning process take place on a single machine. Hence, those HNE methods show severe performance bottlenecks when handling large-scale networks due to high consumption on memory, storage, and running time. In light of this, to cope with large-scale HNE tasks with strong efficiency and effectiveness guarantee, we propose Decentralized Deep Heterogeneous Hypergraph (DDHH) embedding framework in this paper. In DDHH, we innovatively formulate a large heterogeneous network as a hypergraph, where its hyperedges can connect a set of semantically similar nodes. Our framework then intelligently partitions the heterogeneous network using the identified hyperedges. Then, each resulted subnetwork is assigned to a distributed worker, which employs the deep information maximization theorem to locally learn node embeddings from the partition received. We further devise a novel embedding alignment scheme to precisely project independently learned node embeddings from all subnetworks onto a public vector space, thus allowing for downstream tasks. As shown from our experimental results, DDHH significantly improves the efficiency and accuracy of existing HNE models, and can easily scale up to large-scale heterogeneous networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.