Abstract

Due to its unsupervised nature, anomaly detection plays a central role in cybersecurity, in particular on the detection of unknown attacks. A major source of cybersecurity data comes in the form of multivariate time-series (MTS), representing the temporal evolution of multiple, usually correlated measurements. Despite the many approaches available in the literature for time-series anomaly detection, the automatic detection of abnormal events in MTS remains a complex problem. In this paper we introduce DC-VAE, a novel approach to anomaly detection in MTS, leveraging convolutional neural networks (CNNs) and variational auto encoders (VAEs). DC-VAE detects anomalies in time-series data, exploiting temporal information without sacrificing computational and memory resources. In particular, instead of using recursive neural networks, large causal filters, or many layers, DC-VAE relies on dilated convolutions (dc) to capture long and short term phenomena in the data, avoiding complex and less-efficient deep architectures, simplifying learning. We evaluate dc-vae on the detection of anoma-lies on a large-scale, multi-dimensional network monitoring dataset collected at an operational mobile internet service provider (isp), where anomalous events were manually labeled during a time span of 7-months, at a five-minutes granularity. Results show the main properties and advantages introduced by VAEs for time-series anomaly detection, as well as the out-performance of dilated convolutions as compared to standard VAEs for time-series modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.