Abstract

A simple model that is applicable to Spindt-type emitter triodes is presented. Experimentally, it has been observed that the gate current at zero collector voltage follows the same Fowler-Nordheim law as the collector current at high collector voltage, and that for low emission current densities, the sum of gate and collector currents is constant for any collector voltage and is given by the Fowler-Nordheim current I/sub FN/. Based on these observations, a simple model has been developed to calculate the I-V characteristics of a triode. By measuring the Fowler-Nordheim emission, emission area and field enhancement can be obtained assuming a value for the barrier height. Incorporating the gate current, the collector current can be calculated from I/sub c/=I/sub FN/-I/sub g/ as a function of collector voltage. The model's accuracy is best at low current density. At higher emission currents, deviations occur at low collector voltages because the constancy of gate and collector currents is violated. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.