Abstract

During the development of antibacterial and antiviral materials for personal protective equipment (PPE), daylight active functional polymeric materials containing vitamin K compounds (VKs) and impacts of polymer structures to the functions were investigated. As examples, hydrophobic polyacrylonitrile (PAN) and hydrophilic poly(vinyl alcohol-co-ethylene) (PVA-co-PE) polymers were directly blended with three VK compounds and electrospun into VK-containing nanofibrous membranes (VNFMs). The prepared VNFMs exhibited robust photoactivity in generating reactive oxygen species (ROS) under both daylight (D65, 300-800 nm) and ultraviolet A (UVA, 365 nm) irradiation, resulting in high antimicrobial and antiviral efficiency (>99.9%) within a short exposure time (<90 min). Interestingly, the PVA-co-PE/VK3 VNFM showed higher ROS production rates and better biocidal functions than those of the PAN/VK3 VNFM under the same photoirradiation conditions, indicating that PVA-co-PE is a better matrix polymer material for these functions. Moreover, the prepared PVA-co-PE/VK3 VNFM maintains its powerful microbicidal function even after five times of repeated exposures to bacteria and viruses, showing the stability and reusability of the antimicrobial materials. The fabrication of photoinduced antimicrobial VNFMs may provide new insights into the development of non-toxic and reusable photoinduced antimicrobial materials that could be applied in personal protective equipment with improved biological protections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.