Abstract
Acknowledgements represent scholars’ relationships as part of the research contribution. While co-authors and citations are often provided as a well-formatted bibliometric database, acknowledged individuals are difficult to identify because they appear as part of the statements in the paper. We identify acknowledged scholars who appeared in papers published in open-access journals by referring to the co-author and citation relationships stored in the Microsoft Academic Graph (MAG). Therefore, the constructed dataset is compatible with MAG, which accelerates and expands the acknowledgements as a data source of scholarly relationships similar to collaboration and citation analysis. Moreover, the implemented code is publicly available; thus, it can be applied in other studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.