Abstract

The current trend indicates that energy demand and supply will eventually be controlled by autonomous software that optimizes decision-making and energy distribution operations. New state-of-the-art machine learning (ML) technologies are integral in optimizing decision-making in energy distribution networks and systems. This study was conducted on data-driven probabilistic ML techniques and their real-time applications to smart energy systems and networks to highlight the urgency of this area of research. This study focused on two key areas: i) the use of ML in core energy technologies and ii) the use cases of ML for energy distribution utilities. The core energy technologies include the use of ML in advanced energy materials, energy systems and storage devices, energy efficiency, smart energy material manufacturing in the smart grid paradigm, strategic energy planning, integration of renewable energy, and big data analytics in the smart grid environment. The investigated ML area in energy distribution systems includes energy consumption and price forecasting, the merit order of energy price forecasting, and the consumer lifetime value. Cybersecurity topics for power delivery and utilization, grid edge systems and distributed energy resources, power transmission, and distribution systems are also briefly studied. The primary goal of this work was to identify common issues useful in future studies on ML for smooth energy distribution operations. This study was concluded with many energy perspectives on significant opportunities and challenges. It is noted that if the smart ML automation is used in its targeting energy systems, the utility sector and energy industry could potentially save from $237 billion up to $813 billion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.