Abstract

Query co-processing on graphics processors (GPUs) has become an effective means to improve the performance of main memory databases. However, this co-processing requires the data transfer between the main memory and the GPU memory via a low-bandwidth PCI-E bus. The overhead of such data transfer becomes an important factor, even a bottleneck, for query co-processing performance on the GPU. In this paper, we propose to use compression to alleviate this performance problem. Specifically, we implement nine lightweight compression schemes on the GPU and further study the combinations of these schemes for a better compression ratio. We design a compression planner to find the optimal combination. Our experiments demonstrate that the GPU-based compression and decompression achieved a processing speed up to 45 and 56 GB/s respectively. Using partial decompression, we were able to significantly improve GPU-based query co-processing performance. As a side product, we have integrated our GPU-based compression into MonetDB, an open source column-oriented DBMS, and demonstrated the feasibility of offloading compression and decompression to the GPU.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.