Abstract

This paper addresses the generalized mixed sensitivity H <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sup> design problem for linear time-invariant systems. The state space approach is used to investigate the internal structure of this design problem which inherits many pole-zero cancellations. The Toeplitz plus Hankel operator, essential to the computation of the achievable performance, is embedded in this approach. Not only the McMillan degree but also the structure of the H <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sup> controller can be visualized. Mathematical software can be implemented efficiently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.