Abstract
For construction to progress smoothly, effective cost estimation is vital, particularly in the conceptual and schematic design stages. In these early phases, despite the fact that initial estimates are highly sensitive to changes in project scope, owners require accurate forecasts which reflect their supplying information. Thus, cost estimators need reliable estimation strategies. In practice, parametric cost estimation, which utilizes historical cost data, is the most commonly used method in these initial phases. Therefore, compilation of historical data pertaining to appropriate cost variance governing parameters is a prime requirement. However, data mining (data preprocessing) for denoising internal errors or abnormal values must be performed before this compilation. To address this issue, this research proposes a statistical methodology for data preprocessing. Moreover, a statistically preprocessed data–based parametric (SPBP) cost model is developed based on multiple regression equations. Case studie...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Construction Engineering and Management
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.