Abstract

A particularly demanding and important challenge that we face as we attempt to construct the distributed computing machinery required to support SciDAC goals is the efficient, high-performance, reliable, secure, and policy-aware management of large-scale data movement. This problem is fundamental to diverse application domains including experimental physics (high energy physics, nuclear physics, light sources), simulation science (climate, computational chemistry, fusion, astrophysics), and large-scale collaboration. In each case, highly distributed user communities require high-speed access to valuable data, whether for visualization or analysis. The quantities of data involved (terabytes to petabytes), the scale of the demand (hundreds or thousands of users, data-intensive analyses, real-time constraints), and the complexity of the infrastructure that must be managed (networks, tertiary storage systems, network caches, computers, visualization systems) make the problem extremely challenging. Data management tools developed under the auspices of the SciDAC Data Grid Middleware project have become the de facto standard for data management in projects worldwide. Day in and day out, these tools provide the "plumbing" that allows scientists to do more science on an unprecedented scale in production environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.