Abstract
Policymakers often require information on programs' long-term impacts that is not available when decisions are made. For example, while rigorous evidence from the Oregon Health Insurance Experiment (OHIE) shows that having health insurance influences short-term health and financial measures, the impact on long-term outcomes, such as mortality, will not be known for many years following the program's implementation. We demonstrate how data fusion methods may be used address the problem of missing final outcomes and predict long-run impacts of interventions before the requisite data are available. We implement this method by concatenating data on an intervention (such as the OHIE) with auxiliary long-term data and then imputing missing long-term outcomes using short-term surrogate outcomes while approximating uncertainty with replication methods. We use simulations to examine the performance of the methodology and apply the method in a case study. Specifically, we fuse data on the OHIE with data from the National Longitudinal Mortality Study and estimate that being eligible to apply for subsidized health insurance will lead to a statistically significant improvement in long-term mortality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.