Abstract

<div>Abstract<p>Selective kinase inhibitors have emerged as an important class of cancer therapeutics, and several such drugs are now routinely used to treat advanced-stage disease. However, their clinical benefit is typically short-lived because of the relatively rapid acquisition of drug resistance following treatment response. Accumulating preclinical and clinical data point to a role for a heterogeneous response to treatment within a subpopulation of tumor cells that are intrinsically drug-resistant, such as cancer stem cells. We have previously described an epigenetically determined reversibly drug-tolerant subpopulation of cancer cells that share some properties with cancer stem cells. Here, we define a requirement for the previously established cancer stem cell marker ALDH (aldehyde dehydrogenase) in the maintenance of this drug-tolerant subpopulation. We find that ALDH protects the drug-tolerant subpopulation from the potentially toxic effects of elevated levels of reactive oxygen species (ROS) in these cells, and pharmacologic disruption of ALDH activity leads to accumulation of ROS to toxic levels, consequent DNA damage, and apoptosis specifically within the drug-tolerant subpopulation. Combining ALDH inhibition with other kinase-directed treatments delayed treatment relapse <i>in vitro</i> and <i>in vivo</i>, revealing a novel combination treatment strategy for cancers that might otherwise rapidly relapse following single-agent therapy. <i>Cancer Res; 74(13); 3579–90. ©2014 AACR</i>.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.