Abstract

<div>Abstract<p>Next-generation sequencing has uncovered thousands of long noncoding RNAs (lncRNA). Many are reported to be aberrantly expressed in various cancers, including hepatocellular carcinoma (HCC), and play key roles in tumorigenesis. This review provides an in-depth discussion of the oncogenic mechanisms reported to be associated with deregulated HCC-associated lncRNAs. Transcriptional expression of lncRNAs in HCC is modulated through transcription factors, or epigenetically by aberrant histone acetylation or DNA methylation, and posttranscriptionally by lncRNA transcript stability modulated by miRNAs and RNA-binding proteins. Seventy-four deregulated lncRNAs have been identified in HCC, of which, 52 are upregulated. This review maps the oncogenic roles of these deregulated lncRNAs by integrating diverse datasets including clinicopathologic features, affected cancer phenotypes, associated miRNA and/or protein-interacting partners as well as modulated gene/protein expression. Notably, 63 deregulated lncRNAs are significantly associated with clinicopathologic features of HCC. Twenty-three deregulated lncRNAs associated with both tumor and metastatic clinical features were also tumorigenic and prometastatic in experimental models of HCC, and eight of these mapped to known cancer pathways. Fifty-two upregulated lncRNAs exhibit oncogenic properties and are associated with prominent hallmarks of cancer, whereas 22 downregulated lncRNAs have tumor-suppressive properties. Aberrantly expressed lncRNAs in HCC exert pleiotropic effects on miRNAs, mRNAs, and proteins. They affect multiple cancer phenotypes by altering miRNA and mRNA expression and stability, as well as through effects on protein expression, degradation, structure, or interactions with transcriptional regulators. Hence, these insights reveal novel lncRNAs as potential biomarkers and may enable the design of precision therapy for HCC.</p></div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.