Abstract
<div>Abstract<p>Docetaxel-based chemotherapy is the standard first-line therapy in metastatic castration-resistant prostate cancer (CRPC). However, most patients eventually develop resistance to this treatment. In this study, we aimed to identify key molecular genes and networks associated with docetaxel resistance in two models of docetaxel-resistant CRPC cell lines and to test for the most differentially expressed genes in tumor samples from patients with CRPC. DU-145 and PC-3 cells were converted to docetaxel-resistant cells, DU-145R and PC-3R, respectively. Whole-genome arrays were used to compare global gene expression between these four cell lines. Results showed differential expression of 243 genes (<i>P</i> < 0.05, Bonferroni-adjusted <i>P</i> values and log ratio > 1.2) that were common to DU-145R and PC-3R cells. These genes were involved in cell processes like growth, development, death, proliferation, movement, and gene expression. Genes and networks commonly deregulated in both DU-145R and PC-3R cells were studied by Ingenuity Pathways Analysis. Exposing parental cells to TGFB1 increased their survival in the presence of docetaxel, suggesting a role of the TGF-β superfamily in conferring drug resistance. Changes in expression of 18 selected genes were validated by real-time quantitative reverse transcriptase PCR in all four cell lines and tested in a set of 11 FFPE and five optimal cutting temperature tumor samples. Analysis in patients showed a noteworthy downexpression of <i>CDH1</i> and <i>IFIH1</i>, among others, in docetaxel-resistant tumors. This exploratory analysis provides information about potential gene and network involvement in docetaxel resistance in CRPC. Further clinical validation of these results is needed to develop targeted therapies in patients with CRPC that can circumvent such resistance to treatment. <i>Mol Cancer Ther; 11(2); 329–39. ©2011 AACR</i>.</p></div>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.