Abstract

<div>Abstract<p>Wnt/β-catenin (CTNNB1) signaling is crucial for the proliferation and maintenance of intestinal stem cells (ISC), but excessive activation leads to ISC expansion and eventually colorectal cancer. Thus, negative regulators are required to maintain optimal levels of Wnt/β-catenin signaling. Aminoacyl-tRNA synthetase–interacting multifunctional proteins (AIMP) function in protein synthesis, but have also been implicated in signaling cascades affecting angiogenesis, immunity, and apoptosis. In this study, we investigated the relationship between AIMP2 and Wnt/β-catenin signaling in a murine model of intestinal homeostasis and tumorigenesis. Hemizygous deletion of <i>Aimp2</i> resulted in enhanced Wnt/β-catenin signaling, increased proliferation of cryptic epithelial cells, and expansion of ISC compartments. In an <i>Apc<sup>Min/+</sup></i> background, <i>Aimp2</i> hemizygosity increased adenoma formation. Mechanistically, AIMP2 disrupted the interaction between AXIN and Dishevelled-1 (DVL1) to inhibit Wnt/β-catenin signaling by competing with AXIN. Furthermore, AIMP2 inhibited intestinal organoid formation and growth by suppressing Wnt/β-catenin signaling in an <i>Aimp2</i> gene dosage-dependent manner. Collectively, our results showed that AIMP2 acts as a haploinsufficient tumor suppressor that fine-tunes Wnt/β-catenin signaling in the intestine, illuminating the regulation of ISC abundance and activity. <i>Cancer Res; 76(15); 4559–68. ©2016 AACR</i>.</p></div>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.