Abstract

One of the most crucial application of Wireless Body Area Networks in healthcare applications is the process of monitoring human bodies and gather physiological data. Network performance degradation in the form of energy efficiency and latency are caused because of energy depletions which arises due to limited energy resource availability. The heterogeneity of body sensors will lead to variation in the rate of energy consumption. Based on this, a novel Data Forwarding Strategy is presented in this research work to enhance collaborative WBAN operations, improve network lifetime and restrict energy consumption of the sensors. In this paper, we have contributed towards reducing the size of data to be transmitted by compressed sensing and selection of relay sensor based on sampling frequency, energy levels and sensor importance. Using the proposed methodology, it is possible to improve both reliability and energy-efficiency of WBAN data transmission. moreover, it is also possible to adapt to the changing WBAN topologies when the proposed methodology is used, balancing energy efficiency and consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.