Abstract
A sensor network is considered where a sequence of random variables is observed at each sensor. At each time step, a processed version of the observations is transmitted from the sensors to a common node called the fusion center. At some unknown point in time the distribution of the observations at all of the sensor nodes changes. The objective is to detect this change in distribution as quickly as possible, subject to constraints on the false alarm rate and the cost of observations taken at each sensor. Minimax problem formulations are proposed for the above problem. A data-efficient algorithm is proposed in which an adaptive sampling strategy is used at each sensor to control the cost of observations used before change. To conserve the cost of communication an occasional binary digit is transmitted from each sensor to the fusion center. It is shown that the proposed algorithm is globally asymptotically optimal for the proposed formulations, as the false alarm rate goes to zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.