Abstract

We propose a data-driven tracking model predictive control (MPC) scheme to control unknown discrete-time linear time-invariant systems. The scheme uses a purely data-driven system parametrization to predict future trajectories based on behavioral systems theory. The control objective is tracking of a given input-output setpoint. We prove that this setpoint is exponentially stable for the closed loop of the proposed MPC, if it is reachable by the system dynamics and constraints. For an unreachable setpoint, our scheme guarantees closed-loop exponential stability of the optimal reachable equilibrium. Moreover, in case the system dynamics are known, the presented results extend the existing results for model-based setpoint tracking to the case where the stage cost is only positive semidefinite in the state. The effectiveness of the proposed approach is illustrated by means of a practical example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.