Abstract

Electric vehicles (EVs) have been experiencing steady growth in many countries in recent years. Given the increasing transportation electrification, it is urgent to establish an efficient on-demand energy supplement system for EVs. In this paper, we present a data-driven two-stage charging/swapping service scheme, where the EV owners can select multi-services, including fast charging at the fast-charging station (FCS), slow charging at the charging post (CP), and battery swapping at the battery-swapping station (BSS). In the first stage, a service recommendation is provided according to the proposed hybrid recommendation algorithm based on the collaborative filtering (CF) algorithm. In the second stage, the on-demand energy supplement orders are dispatched to the swapping/charging infrastructure. To ensure the long-term revenue of the energy supplement system, we formulate the Markov Decision Processes (MDPs) of different types of charging/swapping infrastructures. Then, deep reinforcement learning (DRL) and mixed-integer linear programming (MILP) are jointly used to solve the large-scale sequential decision-making problem. The proposed methodologies are numerically verified in case studies. According to the simulation results, compared with the state-of-art, our methods can better relieve the burden of the power sectors and shows better performance in daily revenue, answer rate, and queue length at FCS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.