Abstract

The data-driven identification of fuzzy rule-based classifiers for high-dimensional problems is addressed. A binary decision-tree-based initialization of fuzzy classifiers is proposed for the selection of the relevant features and effective initial partitioning of the input domains of the fuzzy system. Fuzzy classifiers have more flexible decision boundaries than decision trees (DTs) and can therefore be more parsimonious. Hence, the decision tree initialized fuzzy classifier is reduced in an iterative scheme by means of similarity-driven rule-reduction. To improve classification performance of the reduced fuzzy system, a genetic algorithm with a multiobjective criterion searching for both redundancy and accuracy is applied. The proposed approach is studied for (i) an artificial problem, (ii) the Wisconsin Breast Cancer classification problem, and (iii) a summary of results is given for a set of well-known classification problems available from the Internet: Iris, Ionospehere, Glass, Pima, and Wine data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.