Abstract

We propose a data-driven filtered reduced order model (DDF-ROM) framework for the numerical simulation of fluid flows. The novel DDF-ROM framework consists of two steps: (i) In the first step, we use ROM projection to filter the nonlinear PDE and construct a filtered ROM. This filtered ROM is low-dimensional but is not closed (because of the nonlinearity in the given PDE). (ii) In the second step, we use data-driven modeling to close the filtered ROM, i.e., to model the interaction between the resolved and unresolved modes. To this end, we use a quadratic ansatz to model this interaction and close the filtered ROM. To find the new coefficients in the closed filtered ROM, we solve an optimization problem that minimizes the difference between the full order model data and our ansatz. We emphasize that the new DDF-ROM is built on general ideas of spatial filtering and optimization and is independent of (restrictive) phenomenological arguments. We investigate the DDF-ROM in the numerical simulation of a 2D ch...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.