Abstract

Identifying coherent structures in fluid flows is of great importance for reduced order modelling and flow control. However, extracting such structures from experimental or numerical data obtained from a turbulent flow can be challenging. A number of modal decomposition algorithms have been proposed in recent years which decompose time-resolved snapshots of data into spatial modes, each associated with a single frequency and growth-rate. Most prominently among them is dynamic mode decomposition (DMD). However, DMD-like algorithms create an arbitrary number of modes. It is common practice to then choose a smaller subset of these modes, for the purpose of model reduction and analysis, based on some measure of significance. In this work, we present a method of post-processing DMD modes for extracting a small number of dynamically relevant modes. We achieve this through an iterative approach based on the graph-theoretic notion of maximal cliques to identify clusters of modes and representing each cluster with a single representative mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.