Abstract

In today's highly competitive market environment, personalized marketing has become an important means for enterprises to gain competitive advantages. In order to better meet customer needs, companies need to accurately identify and classify customers to implement more refined market strategies. This study focuses on the customer classification problem. Based on several classic deep learning models, the BiLSTM-TabNet model is designed, and the Whale Optimization Algorithm (WOA) is introduced to further improve the model performance, thereby improving classification accuracy and practicality. Experimental results show that this model has achieved excellent performance on each data set, has higher accuracy and AUC value than the baseline method, and has advantages over other control models in comparative experiments. This research provides solid support for the implementation of personalized marketing strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.