Abstract
Fourier-transform profilometry (FTP) and data-dependent systems profilometry (DDSP) are two methods that are available for recovering one-dimensional fine surface profiles from the phase of a single interferogram. FTP has already been extended to two-dimensional surfaces; a similar extension of DDSP is introduced here. Inasmuch as this extension involves autoregressive modeling of the rows or columns of an interferogram, the feasibility of using a common model order is explored. The common order reduces not only the amount of computation but also the errors caused by the heterodyned phase-removal procedure. As autoregression requires masking the first few data values, the length of the mask is determined by means of a Green's function. A comparison shows that DDSP outperforms FTP in roughness measurements in terms of rms and center-line average. The comparison also shows that DDSP is able to recover a detailed surface, whereas FTP outlines only the global features. An interferogram regeneration procedure provides a reference surface for the verification of results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.