Abstract

Nanopores have become important tools for single molecule experiments, where information about the properties of DNA/RNA or proteins is inferred from current pulses elicited by individual molecules as they traverse a single pore. However, because of necessary electronic filters employed in the measurement technique, the extraction of meaningful information from short pulses is limited. This restricts the use of nanopores for the investigation of small molecules which cross the pore rapidly. Here we present a method which significantly improves the accuracy of the analysis of noise-filtered current pulses. We introduce improved criteria to measure the pulse width and propose a method to evaluate the pulse height from the falling edge of the pulse, which renders the identification of a pulse plateau unnecessary. The new methods are compared to conventional routines and validated by analyzing representative current pulses as well as experimental protein translocation data. It is demonstrated that the pulse properties can be recovered with satisfying accuracy beyond the usual limitations of Bessel filters, i.e., from pulses featuring a width of merely 0.3f(c)(-1) (f(c) being the filter cutoff frequency).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.