Abstract

The generation and dynamics of dark solitons in mode-locked lasers is studied within the framework of a nonlinear Schrödinger equation which incorporates power-saturated loss, as well as energy-saturated gain and filtering. Mode-locking into single dark solitons and multiple dark pulses are found by employing different descriptions for the energy and power of the system defined over unbounded and periodic (ring laser) systems. Treating the loss, gain and filtering terms as perturbations, it is shown that these terms induce an expanding shelf around the soliton. The dark soliton dynamics are studied analytically by means of a perturbation method that takes into regard the emergence of the shelves and reveals their importance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.