Abstract

The resonant conversion, within the inter-galactic medium, of regular photons into dark photons amplifies the anisotropy observed in the CMB, thereby imposing stringent constraints on the existence of light dark photons. In this study, we investigate the impact of light dark photons, with masses in the range 3 × 10-15 eV < mA ' < 3 × 10-12 eV on the power spectrum of temperature anisotropies within the cosmic microwave background (CMB) radiation utilizing the state-of-the-art large-volume FLAMINGO cosmological simulations. Our results show that using full Planck data, one can expect the existing constraints on the dark photon mixing parameter in this mass range to improve by an order of magnitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.