Abstract

Through numerical simulations, we study the dissolution timescale of the Ursa Minor cold stellar clump, due to the combination of phase-mixing and gravitational encounters with compact dark substructures in the halo of Ursa Minor. We compare two scenarios; one where the dark halo is made up by a smooth mass distribution of light particles and one where the halo contains 10% of its mass in the form of substructures (subhalos). In a smooth halo, the stellar clump survives for a Hubble time provided that the dark matter halo has a big core. In contrast, when the point-mass dark substructures are added, the clump survives barely for \sim 1.5 Gyr. These results suggest a strong test to the \Lambda-cold dark matter scenario at dwarf galaxy scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.