Abstract

The concept of dark energy can be a candidate for preventing the gravitational collapse of compact objects to singularities. According to the usefulness of gravity's rainbow in UV completion of general relativity (by providing a new description of spacetime), it can be an excellent option to study the behavior of compact objects near phase transition regions. In this work, we obtain a modified Tolman-Openheimer-Volkof (TOV) equation for anisotropic dark energy as a fluid by solving the field equations in gravity's rainbow. Next, to compare the results with general relativity, we use a generalized Tolman-Matese-Whitman mass function to determine the physical quantities such as energy density, radial pressure, transverse pressure, gravity profile, and anisotropy factor of the dark energy star. We evaluate the junction condition and investigate the dynamical stability of dark energy star thin shell in gravity's rainbow. We also study the energy conditions for the interior region of this star. We show that the coefficients of gravity's rainbow can significantly affect this non-singular compact object and modify the model near the phase transition region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.