Abstract
To examine the dark adaptation of human rod bipolar cells in vivo, we recorded ganzfeld ERGs to (a) a family of flashes of increasing intensity, (b) dim test flashes presented on a range of background intensities, and (c) dim test flashes presented before, and up to 40 min after, exposure to intense illumination eliciting bleaches from a few per cent to near total. The dim flash ERG was characterized by a prominent b-wave response generated principally by rod bipolar cells. In the presence of background illumination the response reached peak earlier and desensitized according to Weber's Law. Following bleaching exposures, the response was initially greatly desensitized, but thereafter recovered slowly with time. For small bleaches, the desensitization was accompanied by acceleration, in much the same way as for real light. Following a near-total bleach, the response was unrecordable for >10 min, but after approximately 23 min half-maximal sensitivity was reached, and full sensitivity was restored between approximately 35 and 40 min. With smaller bleaches, recovery commenced earlier. We converted the post-bleach measurements of desensitization into 'equivalent background intensities' using a Crawford transformation. Across the range of bleaching levels, the results were described by a prominent 'S2' component (0.24 decades min(-1)) together with a smaller and slower 'S3' component (0.06 decades min(-1)), as is found for dark adaptation of the scotopic visual system. We attribute the S2 component to the presence of unregenerated opsin, and we speculate that the S3 component results from ion channel closure by all-trans retinal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.