Abstract
AbstractEmissions of volatiles increase following herbivory from many plant species and volatiles may serve multiple functions. Herbivore‐induced volatiles attract predators and parasitoids of herbivores and are often assumed to benefit plants by facilitating top‐down control of herbivores; this benefit of induced emissions has been tested only a few times. Volatile compounds released by experimentally clipped sagebrush shoots have been shown to reduce levels of chewing damage experienced by other shoots on the same plant and on neighboring sagebrush plants. In this study, I asked whether experimental clipping attracted predators of herbivorous insects to sagebrush shoots. I also evaluated aphid populations and chewing damage on clipped and unclipped shoots and whether predators were likely to have caused differences in aphids and chewing damage. Shoots that had been clipped recruited more generalist predators, particularly coccinellids andGeocorisspp. in visual surveys conducted during two seasons. Clipping also caused increased numbers of parasitized aphids in one season. Ants were common tending aphids but were not significantly affected by clipping. Despite the increase in generalist predators, clipped plants were more likely to support populations of aphids that increased during both seasons compared to aphids on unclipped control plants. Clipped shoots suffered less damage by chewing herbivores in the 1‐year in which this was measured. Chewing damage was not correlated with numbers of predators. These results suggest that predators and parasitoids were attracted to experimentally clipped sagebrush plants but that these predators were not effective at reducing net damage to the plant. This conclusion is not surprising as much of the herbivory is inflicted by grasshoppers and deer, herbivores that are not vulnerable to the predators attracted to sagebrush volatiles. More generally, it should not be assumed that predators that are attracted by herbivore‐induced volatiles necessarily benefit the plant without testing this hypothesis under field conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.